
Software Engineering for Business Information Systems (sebis) 

Department of Informatics

Technische Universität München, Germany

wwwmatthes.in.tum.de

TEAR 2014

Type-Safety in EA Model Analysis
01.09.2014

Thomas Reschenhofer, Ivan Monahov, Florian Matthes

http://wwwmatthes.in.tum.de


1. Introduction

 Model-based EA analysis

 The untyped core expression language

2. Contribution

 The typed model-based expression language (MxL)

 Transparency of quantitative EA model

 In-browser code editor

 Automated refactoring

3. Conclusion and outlook

Overview

© sebis140901 – Reschenhofer – Ulm, Germany 2



• An EA model covers business as well as IT aspects to provide a holistic view of 

an organization and supports decision makers with relevant information. 

• Controlling and planning an EA and its evolution requires its analysis

• Qualitative EA analysis not sufficient because of size and complexity of EAs

 Quantitative EA analysis with EA metrics

• Definition of EA metrics by domain-specific language (DSL) based on EA 

information model

 Design decisions (functional?, object-oriented?, statically typed?, etc.)

Motivation

© sebis140901 – Reschenhofer – Ulm, Germany 3

• What are the disadvantages of a dynamically typed DSL for defining EA 

metrics in a model-based EA tool?

• What are the implications/benefits of such a DSL’s static type-safety (in 

particular when considering dynamic EA models)?



Model-based EA analysis

© sebis140901 – Reschenhofer – Ulm, Germany 4

Qualitative EA Model

Quantitative EA Model

External factors

Enterprise Architecture Model

EA Model Element

Type

EA Metric

Attribute Relation

quantifies0..*

0..*

0..*

uses



• Functional and sequence-oriented query/expression language

• Higher-order functions & lambda expressions

• Inspired by OCL and LINQ

• Supports Microsoft’s Standard Query Operators

• Integrated in model-based Hybrid Wiki collaboration platform

• No static type-safety

• No validation of static semantics at compile-time

The untyped core expression language

© sebis140901 – Reschenhofer – Ulm, Germany 5

Monahov, I.; Reschenhofer, T.; Matthes, F.: Design and prototypical implementation of a DSL empowering business users to define EAM KPIs

Exemplary Query with untyped core expression languageExemplary meta-model

Business Application

Name : String

Function points : Number

find "Business Application"

.select(ba => ba["Function points"].first())

.sum()



1. Introduction

 Model-based EA analysis

 The untyped core expression language

2. Contribution

 The typed model-based expression language (MxL)

 Transparency of quantitative EA model

 In-browser code editor

 Automated refactoring

3. Conclusion and outlook

Overview

© sebis140901 – Reschenhofer – Ulm, Germany 6



• Sub typing

• Re-use of functionality

• Polymorphic types

• Type parameters in types and functions

• E.g., signature of select-function: 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑇 × 𝑇 → 𝑈 → 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑈

• Restricted type inference

• Omit explicit annotation of types (e.g., types of function parameters)

• Implicit determination of types

A type system to support type-safe EA analysis

© sebis140901 – Reschenhofer – Ulm, Germany 7

Exemplary QueryExemplary meta-model

Business Application

Name : String

Function points : Number

find "Business Application"

.select(ba => ba["Function points"].first())

.sum()

Exemplary Query with untyped core expression language



• Implementation of type-system

• Sub typing

• Polymorphic types

• Restricted type inference

• Static type-safety

• Validation of an MxL expression‘s static semantics at compile-time

The typed model-based expression language (MxL)

© sebis140901 – Reschenhofer – Ulm, Germany 8

Exemplary QueryExemplary meta-model

Business Application

Name : String

Function points : Number

find ‘Business Application’

.select((ba:‘Business Application’) =>

ba.‘Function points’)

.sum()

Exemplary MxL query

find ‘Business Application’

.select(ba => ba.‘Function points’)

.sum()

Exemplary QueryExemplary MxL query (with implicit parameter type)

find ‘Business Application’

.select(‘Function points’)

.sum()

Exemplary QueryExemplary MxL query (with implicit lambda)



Transparency of quantitative EA model

• Static type-safety 

enables validation of 

static semantics

• Resolving identifiers 

and checking their 

types

• Analysis of 

dependencies between 

EA metrics and model 

elements

• Automated generation 

of quantitative model’s 

computation graph

© sebis140901 – Reschenhofer – Ulm, Germany 9

TypesBasic Functions Attributes

Custom MxL Function STATIC::sumOfFunctionPoints

Description Returns the sum of function points of all business applications

Return Type Number

Method Stub find 'Business Application'

.select('Function points')

.sum()

Outgoing MxL References

Sequence::sum Business Application::Function points Business Application

Custom Functions

Incoming MxL References

STATIC::averageFunctionPoints

Screenshot of an MxL function



In-browser code editor

• Syntax highlighting

• Highlighting of keywords, strings, etc.

• Code completion

• Provision of list of possible identifiers

• Proposes elements from quantitative and qualitative EA model

• Integrated documentation

© sebis140901 – Reschenhofer – Ulm, Germany 10

Screenshot of the MxL code editor

Line: 2 | Column 11

find 'Business Application'

.sum(Fu

Function points

Functional Domain

Funding
Function points

Attribute of type Business 

Application

Determines the functional 

scope of a business 

application.

• Code navigation

• Incoming and outgoing 
references are clickable

• Error localization

• Highlighting of origin of 
syntactic and semantic 
errors



Automated refactoring

© sebis140901 – Reschenhofer – Ulm, Germany 11

• Automated adaption of 

expression on changes of 

the meta model, e.g., 

when

• Renaming of elements

• Changing the type of 

elements

• Deleting elements

• Creating elements

• Keeping semantic 

consistency
TypesBasic Functions Attributes

Custom MxL Function STATIC::sumOfFunctionPoints

Description Returns the sum of function points of all business applications

Return Type Number

Method Stub find 'Business Application'

.select('Function points')

.sum()

Outgoing MxL References

Sequence::sum Business Application::Function points Business Application

Custom Functions

Incoming MxL References

STATIC::averageFunctionPoints

Screenshot of an MxL function

Functional scope

Functional scope



Evaluation: Defining metrics for application 

landscapes complexity of four German banks

© sebis140901 – Reschenhofer – Ulm, Germany 12



1. Introduction

 Model-based EA analysis

 The untyped core expression language

2. Contribution

 The typed model-based expression language (MxL)

 Transparency of quantitative EA model

 In-browser code editor

 Automated refactoring

3. Conclusion and outlook

Overview

© sebis140901 – Reschenhofer – Ulm, Germany 13



Conclusion & outlook

© sebis140901 – Reschenhofer – Ulm, Germany 14

• Untyped core expression language

• Enables the user-oriented definition of EA metrics

• Problem: Lack of validation of static semantics on compile-time

• Typed model-based expression language (MxL)

• Validation of static semantics through type checking

• Transparency of quantitative EA model

• Enables automated refactoring on changes of meta model

• Prototype evaluated in research environment

• Measuring complexity of application landscapes

• Data from four German banks

• Outlook / Open issues

• Performance issues on execution of MxL queries

• Temporal EA analysis

• Evaluation strategies of MxL expressions



Technische Universität München

Department of Informatics

Chair of Software Engineering for 

Business Information Systems

Boltzmannstraße 3

85748 Garching bei München

Tel +49.89.289.

Fax +49.89.289.17136

wwwmatthes.in.tum.de

Thomas Reschenhofer

M.Sc.

17100

thomas.reschenhofer@tum.de

Questions?

http://wwwmatthes.in.tum.de/
mailto:thomas.reschenhofer@tum.de

